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DISPERSION OF THERMAL WAVES IN
GRANULAR MATERIAL

Yu. A. Buevich and Yu. A. Korneev UDC 536.244:541,182

The effective thermophysical parameters of a dispersed medium are discussed which charac-
terize the propagation of temperature waves in the medium and the equations of nonstationary
thermal conductivity are formulated.

Many papers (see [1-5], for example, and the review in [6]) have been devoted to a detailed study of
nonstationary fields of temperature or impurity concentration in dispersed or other heterogeneous media.
The interest in this subject is connected with the commercial prevalence of periodically operating equipment
in which such media are used as working bodies and also of equipment in which there is a "response"” to a
sudden change in external conditions (chromatographic columns, absorbers, etc.). Nonstationary transport
processes play an important role in phenomena occurring within the individual porous grains of a catalyst [7,
8] or in particles being dried [9], which can also be considered as a kind of heterogeneous material. Finally,
such processes are important in laboratory practice in the determination of effective dispersion coefficients
for heat or mass in composite materials and in dispersed flows of diverse structure [10,11].

Even for an analysis of the penetration of heat in the simplest "composite” material — a system of two
adjacent uniform blocks [12] — or from the consideration of heat propagation along identically oriented fibers
of an ordered fibrous material [13], it is clear that the behavior of a nonstationary temperature field in hetero~
geneous and homogeneous media differs not only in quantitative and qualitative respects, but also depends
strongly on the structural features of the medium. The latter is responsible for the significant spread in the
experimental data obtained under various conditions even in materials of identical structure together with the
lack of a common viewpoint on the mechanism for transport processes in heterogenous media [5~10], with
attempts at deriving some correlation relations that would generalize such data leading to extremely diverse
results depending on the type of computational model used for the generalization [11]. Therefore, an a priori
formal simulation of these processes isclearly unsatisfactory, and one feels theneed for development of more
detailed physical representations in the formulation of a deeper theory based on them.

We consider below only granular materials, one phase of which consists of discrete particles distributed
in the other phase. In the general case, both phases of the medium may be mobile but the Péclet number
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characterizing local convective transport in the neighborhood of individual particles of the dispersed phase
around which the continuous phase flow is assumed to be small so that only the convective transport asso-
ciated with the mean motion of the medium is important.

The transport process in a dispersed medium of this kind is analyzed on the basis of the general
methods developed in [14]. We further assume that the averaged characteristics of the medium vary in time
and space considerably more slowly than the mean temperatures of its phases and that the linear scale L of
the latter is considerably greater than the characteristic particle size a. These assumptions make it possible
to use a continuous description of the transport process by considering the dispersed medium as some form of
a spatially uniform continuum [14].

In addition, we assume for simplicity that the particles are identical spheres and that their volumetric
concentration is small in comparison with unity. These assumptions do not affect the qualitative aspect of the
effects discussed below and, in principle, can be eliminated, but they permit considerable simplification of
the computations by focusing attention on the physical essentials of the matter. For definiteness, the subject
of discussion is the propagation of heat, but all the results are equally valid for the propagation of a mass of
impurity.

We first investigate a monochromatic temperature wave in which the time dependence of all quantities is
concentrated in the factor eitt, The contact thermal conductivity over the body of particles in a dilute dis-
persed system can be neglected so that we have on the basis of [14] the equations

iecwt, = —vq + p®, ipc,0t, = — pd,

(1)
= — AvT — (A, — Ay) oF, 7 =7, 1+ p1{

for the amplitudes 7, and 7, of the mean temperatures of the phases in a coordinate system coupled to the
mean motion of the medium, where F and ® are the amplitudes of the linear functionals introduced in [14],
which can be represented in the form

F =wyr,, ®=—ut, (2)
with certain a priori unknown complex coefficients v and p.

In addition, F and & can be expressed through quantities averaged over the dispersed phase in the form
of the integrals [14]

FR) = 'jvt*mk') dr’,
4ma®
R—R'.<q 3)
3 [_.
(I) — 7 E3 ’ d I’
®) = j vq* (RR)dR
R—R"<a,

where 7* and g* are the amplitudes of the mean temperature and heat flow within a selected (test) particle and
the integration is carried out over positions R' of the center of that particle such that the point R is within the
particle.

We point out that Egs. (3) are more exact than the analogous formulas obtained from Egs. (3) by neglect-
ing terms of higher order in a/L and discussed in detail in [14]. The eguations mentioned express quantities
averaged over the dispersed phase in the form of integrals over the surface, and not over the volume, of the
test particle.

Equations (1) and (2) indicate that 7, is proportional to 74, i.e., by introducing a proportionality factor
o, one can write

Ty =0T, = — ﬁ)“uVTo , B= ioclu), )

ﬁ:e—i—op—}—(x—-l)vp, # = hylhy,

where the equation
i (ec, + poc,) @ty = PAAT, (5)

holds for 7.
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Thus, the behavior of a monochromatic wave will be described completely if the coefficients 8 (or v) and
o (or p) are known. The latter must be found from a comparison of Egs. (2) and (3) if one determines 7* and
g* from a solution of the special problem involving the mean perturbations introduced by a test particle into
the mean unperturbed fields 7, and 74 [14,15].

In view of the smallness of the volumetric concentration of the particles, one can neglect their "ack of
overlap, " i.e., the fact that centers of neighboring spheres cannot be closer than a distance 2a. This makes
it possible to consider the local concentration of the dispersed phase at the surface of the test particle, which
is discussed in [14], as simply corresponding fo ¢ and to simplify the calculations considerably. Further,
because of the inequality ¢ « 1, it is appropriate to represent the field 7, in the neighborhood of the point R
in the form of a Taylor expansion, where it is sufficient to assume for the purposes of this paper that this
field depends on some one Cartesian coordinate. Then

TO(R+r)=iTm(R)ﬂ, z=rcosf. 6)
m=0

Similar expansions can also be written in the neighborhood of all other points R', where the coefficients
in such expansions (denoted below by T',,) are simple polynomial functions of the coefficients Ty, in Eq. (6)
and of the components of the vector R' — R, the explicit form of which is not given here.

From Egs. (5) and (6) we have the recurrence relation

. . 2
T -t (5) Tz, m>2,
“m(m—1) \a s
vé:__;n’ -2= i (si—‘rpo), nz____cl_a,)_ az’
B\ o« 1
where, as is easily seen, there occur the order-of-magnitude equalities
E~alL, aTy ~ET,. (8)

In discussing the problem of a test particle with a center at the point R', it is convenient to use expan-
sions in spherical functions also; the expansions

T, R+ r).=g M,, R’, r} P, (cos8),
m=0

9
nyt, R' 1) = Z N, (R, r) P, (cos )

m=0

are needed below, where My, and Ny, in Egs. (9) are polynomials in r with coefficients that depend linearly
on T'y,; for brevity, these polynomials are not written out here.

The problem of the temperature field in the neighborhood of a test particle with a center at the point R’
(r = 0) has the form

AUV —iElaP T =0, r>q Ar*—t(n/a)%* 0, r<a,
T, + 7' =1% Pny (T, + ') =xyt*, r=agq, (10
T30, r—o00; ™00, r=0,

where 7, is the unperturbed field defined by Egs.(9). The solution of the problem (10) is written in the form

T = 2 fm () Py, (cos 6), ©* = 2 @ (1) P, (c0s 6),
m=0 m=0
f() = Aprm (L)”‘”” b (V = -Ei) (11
Er

m+1/2 —_—
on() =B ()" dmbi (= ).

with the coefficients Ay, and By, being expressed in the form
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1 " ) Jmy1/2
A‘m= Z,: (F M jmt1/2—aN,, "n,,.+1/2 ) !

I ¢ Hp,
B = A~ LMmhm+l/2_aNm ’gr'n{_ll%) 4
" a2)

Jm+l/2 kg Hm‘l/2 .
A, =am (T]m hmy1/2— e ?,—_Eﬁg* m+1/2] s

{hm+1/2(x)}'___(m+x.£_) 1 {Hm+l/2(V":—ix)}.

jma172 () de | amv42 4 g (V=ix)

Here Py (%), J, (X), and Hyy, (x) are Legendre polynomials and Bessel and Hankel functions of the first kind;
when r =a, the value of the argument is not written in the symbols for the various functions.

The above relations make it possible in principle to determine the quantities 7* and g* appearing in the
integrals in Egs. (3) to the order of the ratio a/L to as high a power as desired. We limit ourselves to terms
no higher than fourth order in the final expressions for 7' and 7* in Egs. (11). As is easily seen, this means
that in the expansions (6) and (9) for 7, and in the expansion for nV7, in Eq. (9}, it is necessary to keep only
the first five or four terms, respectively. It is further clear from Eqs. (7) and (8) that the parameters £ and
n are of the order of a/L, i.e., one should assume £ ~ 7 «1. The last makes it possible to expand the Bessel
and Hankel functions in Egs. (11) and (12) in series in powers of their arguments, where it is only necessary to
keep terms of order no higher than fourth in these series by limiting ourselves to the assumed accuracy.

As the result of rather lengthy computations, the temperature 7*(R|R") is expressed in the form of a
polynomial of the fourth degree in the parameters £ and 7, the coefficienis of which are certain functions of
the vector r =R — R’ (in the present case of the quantities r and cos § = z/r) and also depend linearly on the
quantities My, and Ny (m = 0,...,4) introduced in Egs. (9). The latter are represented in elementary fashion
through r and the coefficients T'y, (m =0,...,4). Differentiation of the resultant polynomial makes it possible
to express VT*(RIR') and Vg*RIR'), which appear in the integrands in Egs. (3}, in the form of polynomials in
¢ and 5 also.

In the latter polynomials, it is convenient to use in place of T'y, the coefficients T, determined at the
point R under consideration in accordance with Eq. (6). Substituting in the specified polynomials the quantities
Ty expressed as functions of Ty and of the displacement vector r =R — R', using the recurrence relation
(7) and the obvious relations

T,R) =1 R), T1 R} z,=v7 R), 13)

where z; is a unit vector in the direction of the z axis, we obtain from Egs. (3)

_ iy R e e B . o
o® -1 ndR)[l‘ ! (3; R )], 14)
VR [, M SELB) . e c‘*ﬁ(ﬂ—x)]
FR = o [%T TERIOT R ™ I
o (15)
- —r e . 2y . (2 ' 2
St B = — =t (4 4 50up — 13p%) — (x2-1- 13xB + 4B?)

(the intermediate computations and also the polynorriial representations for 7* and other quantities are not
written down because of their extreme complexity). Equation (14) determines the intensity of the interphase
heat transfer per unit volume of the medium and Eq. (15) gives the effective mean heat flow g from Eg. (1).

Comparing Eqgs. (2) with Egs. (14) and (15), we obtain equations for the determination of the unknown co-
efficients o to B [the other coefficients introduced can be calculated from Egs. 4)],

M (o, %8 5%+§>
=1- 3;2 T TTma 12
o=lt— ( % % 38

(16)

S B, i Zaﬁ(ﬁ*%)}_

o px—1) i
mwfw+——~«[%+75 o i

%+ 28
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It is reasonable to seek a solution of these equations in the form of polynomials in powers of % or,
which is the same thing, in powers of view. To the accuracy assumed in this paper, one can set

0 =09 L vV, p= B0 L fap™ 4 (iw)*? ﬁm , 1mn
calculating the coefficients in these relations which are independent of the frequency « by using the small
parameter 7.

In particular, we have from Eqgs. (14)- (17)

o =1, B = 1/4{2—3p—= (1 —3p) + [(2—3p —x (1 — 3p))* + 8'"}. (18)

The first of these relations demonstrates that under stationary conditions the mean temperatures of the phases
agree with each other and with the mean temperature of the mixture as a whole, as should be expected. The
second relation determines the effective stationary thermal conductivity of a granular material, which was
previously calculated in {15].

Further, using Eq. (7), we have to the required accuracy

: 2 (0) 5 (0)
0.(” = cla ( 3§5 *® + B . M +5 ) R §0= c-’d:l, B=B(°) N

5}‘41 %+ 2ﬂ(0) 3ﬁ(0’
m_ e [ m, e _x—DS ___Ben(x—=1) 19)
=% [G + 158 (x4 2B ] K ot 20y
2 \3/2 (8) ;al®}
B =_‘1)<~ ( Cl‘fc" ) (%_(;)? 2;(%))2—%) , So=S@, "),
1 B

where £, S, and /3(0) are defined in Egs. (7), (15), and (18), respectively., Equations (18)and(19) are consider-
ably simplified in various limiting cases, particularly when» — 0 or » -,

Note that when A, = Ay (# =1) and ¢; = ¢y, the particles are indistinguishable (with respect to heat trans-
port) from the continuous phase. In this case, we obtain () =1, &, =1 from Egs. (7) and (18) and ¢(¥) = g(t) =
B(z) =0 from Eq. (19), which is typical of a homogeneous thermally conducting medium. In a heterogeneous
granular medium, the effective "thermal conductivity" A = 8}, and effective coefficient of interphase exchange
display marked "non-Newtonian® properties in the general case; first, they depend on the wave frequency,
and, second, they are complex quantities. This corresponds to two new effects which can significantly affect
the behavior of thermal waves, influencing the frequency dependence of the rate of propagation of the waves,
the phase-shift angles between the oscillations of the different variables, and, in the final analysis, the dis-
persion of wave packets and the response of temperature fields in the medium to changes in external temper-
ature or heat flow. The nature of such an effect is easily explained by means of the simple equations (4) and
(5) and therefore a study of it is omitted.

All the expressions given above can be considered as relating to Fourier transforms of arbitrary vari-
ables in the fields 7,(t,r) and 7((t,r) by assuming

T, ({t, 1) = \" ¢t (0, N do, T4 1) = 5 €%, (¢, r)do. (20)

v

For these fields, we then obtain from the first equations in ) and (16)

3
ot 1) = (1 2ot a—f) nl, . @1)

Similarly, using Eq. (15) and considering q in Eq. (1) as a Fourier transform of the true mean heat flow
q(t,r), we obtain after simple transformation

i
’ F.] N 6(2) ~ aZVT dt/

" (0) (y Y — i _ 0 S
d ’ ( A P Vi ho o Vit

ot (22)

It is easy to see that the quantities [ 1) /80| and | o{t) | have the sense of certain characteristic relaxa~
tion times for thermal conductivity in the dispersed medium, the first of which characterizes the relaxation
of the mean flow to a stationary value corresponding to a given instantaneous value of the gradient of the mean
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temperature and the second of which characterizes the relaxation of the temperature of the dispersed phase

to the temperature of the continuous phase as the result of heat exchange between the phases. From the physi-
cal point of view, a nonzero value for these times is obviously associated with a difference in the thermal iner-
tia of the continuous and dispersed phases. Note that ¢(!) from Eq. (19) can, in principle, be both positive and
negative,

The last term for the mean heat flow in Eq. (22) depends on the history of the heat-transport process and
is nonlocal in time. In this respect, it reminds one, for example, of the well-known Basset force acting on a
small particle suspended in a pulsating flow. As far as the authors know, the existence of such a term has not
been pointed out previously for media of the type discussed here.

As follows from Egs. (1) and (4), 7;{,r), and also the mean temperature 7(t,r) of the medium as a whole,
are expressed in the form of simple linear functionals of 7,{t,r), i.e., it is only necessary to determine the
field 74{t,r). An equation for the direct determination of this field should be obtained after the application of
the inverse Fourier transform to Eq.(5). If we limit ourselves to terms of the order of w [or, which is the
same thing, to the order of @/L)%], we obtain from Eq. (5)

a
(ecy -+ pe) — 2= = B Dol (23)

i.e., in this approximation, the dispersed medium is indistinguishable from some homogeneous medium, the
thermal conductivity and heat capacity of which are, respectively, 8"\, and ec, + pcy.

To an accuracy of the order of «? [or (a/L)%], we have from Eq. (5)

9% ) ot / . a
oo, _a_;o_ - (ecy - pey) ato —1, ( B0 g a_t) At,, (24)

from which the sense of the guantities lﬁ(i)/ B | and | o{!)| as relaxation times becomes especially clear.
Terms which depend on the history of the process and which thereby complicate analysis of heat transport
considerably only appear to the approximation with respect to «; this should be considered as an extremely
favorable circumstance.

It is significant that Eq. (24) can be either hyperbolic or elliptic depending on the sign of o{1) if one ne-
glects the relaxation of thermal flow by setting ,8(1) = 0 (although there is no justification for doing so). Ob-
viously, the first case is encountered considerably more often so that certain advances achieved in the de-
scriptionof heat transport in dispersed media by means of an equation of the hyperbolic type [16] become
understandable, As far as the authors know, elliptic eguations have not been included in the simulation of heat
transfer previously., In the general case, of course, it is necessary to consider all terms appearing in Eq. (24).

We point out in conclusion that Eq. (24) and the parameters ¢ and § were obtained here under definite,
and sometimes limited, assumptions. However, one can assume from general considerations that this equa-.
tion is applicable to the analysis of transport processes in a congiderably broader class of heterogeneous
materials, although in this case it is necessary to consider (1) and 6(1) as empirical coefficients. In parti-
cular, precisely such an equation should be used for correlation analysis of experimental data and in the con-
struction of computational models.

NOTATION

Ay s By, coefficients in (11), (12); a, particle radius; ¢, heat capacity per unit volume; F, functional
introduced in (2), (3); fm, ¢m, functions in (11); hy,, jm, functions defined in (12); L, scale of mean temper-
ature fields; My, Ny, coefficients in (9); n, unit vector, r/r; ¢, heat flow; R, R', r, spatial coordinates; S,
quantity in (15); Ty, coefficients in (6); t, time; z, coordinate on which mean temperature fields depend; 3,
parameter defined in (4); Ay, parameter in (12); ¢, 7n, parameters introduced in (7); &, porosity; , polar
angle; 1 =X/ Ay A, thermal conductivity; p,v, coefficients in (2); £, parameter in (7); p, volumetric concen-
tration of particles; o, proportionality factor introduced in {4); 7, mean temperature or its amplitude; @,
functional defined in (2), (3); w, frequency. Indices: 0,1, quantities associated with the continuous and dis-
persed phases, respectively; asterisks, temperature and heat flow within a test particle.
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MECHANICS OF JET FLOWS IN GRANULAR LAYERS.
COALESCENCE OF BUBBLES IN CONSTRAINED
FLOW CONDITIONS

Yu. A. Buevich and G. A. Minaev UDC 532.545

The coalescence of bubbles forming during the injection of a system of parallel jets into a
high fluidized layer is investigated. The effect of the parameters of perforated gas-dis-
tributor arrays on the formation of the layer structure is briefly discussed.

A system of parallel jets is very often used for fluidization of granular layers and also for improving the
characteristics of layers fluidized by an independent homogeneous flow. In both cases the characteristics of
these jets have a marked effect on the formation of the layer structure as well as on the intensity of the pro-
cesses of heat and mass transfer realized in the layer. From the point of view of applications the main interest
lies in the interaction of jets and the bubbles forming in them and in their dependence on the characteristics of
the layer itself as well as on the initial parameters of the jets {shape and size of nozzles or apertures, velocity,
the step between adjacent apertures, and so forth). It is just this interaction that primarily determines the
nature of gas distribution and the required structure of the fluidized layer so that its investigation is entirely
necessary for developing methods of layer structure control and engineering techniques of its computation, as
well as for the construction of gas-distributor units.

In spite of the obvious practical significance of this problem, its meaningful investigation is stillin a
rudimentary stage (for example, see [1]). There are only isolated empirical or purely engineering investiga-
tions of particular problems encountered in the construction or operation of certain equipment. Theoretically,
constrained motions in a fluidized layer have been investigated only in connection with the restricting effect of
the equipment walls on the distribution of gas flows around a solitary bubble [2], with the interaction of two
closely spaced bubbles in an infinite layer [3], and with the mutual effect of two stationary adjacent plane jets
on gas injection and the particles in each of these jets [4]. Below, the results of experiments on the investiga-
tion of the interaction of parallel jets in a high layer and on the determination of the height of primary coales-
cence of bubbles as a function of the physical and regime parameters are presented and discussed.

A system of two semiinfinite vertical jets flowing out into a ﬂuidized_layer of particles of polystyril,
nitroammophosph  (a nitrogen—ammonium— phosphorus fertilizer), aluminosilicate catalyzer, and sand of differ-
ent granulometric composition was taken as the initial objects for investigation. In most experiments the
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